Rock Texture & Pattern at Black Brook Cove

Patterns of dykes in granite in the cliffs at Black Brook Cove

Black Brook Cove along the Cabot Trail in Cape Breton Island, Nova Scotia, gets its name from the dark colour of the river water which flows into it. On the southern edge of the cove, the upper banks of the estuary are piled high with large bleached driftwood lying on a bed of boulders and pebbles. Curving banks of pebbles on the main body of the beach give way to smooth waterworn rock outcrops; and spectacular jagged cliffs surmounted by pines form the northern arm of the cove.

The rocks at Black Brook Cove are part of the Devonian Black Brook Granitic Suite formed about 375 million years ago. They are igneous plutonic rocks. The magma from which they formed was created by the melting and recrystallization of meta-sedimentary rocks that were sub-ducted during the collision of the ancient land masses called Ganderia and Avalonia.

The remarkable feature of the rocky outcrops at Black Brook Cove, and at Green Cove just a little further south, is the number of criss-crossing dykes or veins of contrasting colour that create abstract angular patterns on the rock surfaces. These patterns and colours are accentuated when the rock is wet. The whole beachscape is captivating on a bright sunny afternoon but the area must look its best after a heavy downpour of rain.

The main rock is a grey granite with small black flakes of biotite. Earth movements and increased pressures on numerous occasions subsequent to its emplacement have cracked the rock and opened up fissures into which certain minerals that were squeezed out of the mother rock have entered and recrystallized. Mostly the veins formed in this way are composed of aplite or pegmatite. Both are pink-orange in colour Aplite is made of quartz and feldspar and is fine-grained with a smooth sugary texture. Pegmatite is darker and coarser with large visible individual crystals of quartz, feldspar and mica in both the black biotite and clear muscovite forms.

REFERENCES

Anoiyothin, W.Y. and Barr, S.M. (1991) Petrology of the Black Brook Granitic Suite, Cape Breton Island, Nova Scotia. Canadian Minerologist, Vol. 29, pp. 499-515.

Barr, S.M. and Pride, C.R. (1986) Petrogenesis of two contrasting Devonian Granitic Plutons, Cape Breton Island, Nova Scotia. Canadian Minerologist, Vol.. 24, pp. 137-146.

Donohoe, H. V. Jnr, White, C. E., Raeside, R. P. and Fisher, B. E, (2005) Geological Highway Map of Nova Scotia, Third Edition. Atlantic Geoscience Society Special Publication #1.

Hickman Hild, M. and Barr, S. M. (2015) Geology of Nova Scotia, A Field Guide, Touring through time at 48 scenic sites, Boulder Publications, Portugal Cove-St. Philip’s, Newfoundland and Labrador. ISBN 978-1-927099-43-8, pp. 94-97.

Atlantic Geoscience Society (2001) The Last Billion Years – A Geological History of the Maritime Provinces of Canada, Atlantic Geoscience Society Special Publication No. 15, Nimbus Publishing, ISBN 1-55109-351-0.

Rock Texture & Pattern at Main a Dieu

The wooden boardwalk from the Coastal Discovery Centre at Main á Dieu on the southeast coast of Cape Breton Island, in Nova Scotia, Canada, leads to a look-out platform that is built on top of a rocky outcrop. The rock is a basalt volcanic lava flow dating from the Neoproterozoic Period around 560 million years ago. The basalt is characterised by many interesting natural fracture patterns; veins and weathered surfaces of contrasting colours; and different textures depending on exposure to aerial or aquatic erosional elements.

REFERENCES

Atlantic Geoscience Society (2001) The Last Billion Years – A Geological History of the Maritime Provinces of Canada, Atlantic Geoscience Society Special Publication No. 15, Nimbus Publishing, ISBN 1-55109-351-0.

Barr, S.M. (1993) Geochemistry and tectonic setting of late Precambrian volcanic and plutonic rocks in southeastern Cape Breton Island, Nova Scotia. Can. J. Earth Sci. 30, pp. 1147-1154.

Donohoe, H. V. Jnr, White, C. E., Raeside, R. P. and Fisher, B. E, (2005) Geological Highway Map of Nova Scotia, Third Edition. Atlantic Geoscience Society Special Publication #1.

Hickman Hild, M. and Barr, S. M. (2015) Geology of Nova Scotia, A Field Guide, Touring through time at 48 scenic sites, Boulder Publications, Portugal Cove-St. Philip’s, Newfoundland and Labrador. ISBN 978-1-927099-43-8, pp. 66-69.

Keppie, J.D., Dostal, J. and Murphy, J.B. (1979) Petrology of the late Precambrian Fourchu Group in the Louisbourg Area, Cape Breton Island. Paper 79-1, Nova Scotia Department of Mines and Energy.

A Visit to Crystal Cliffs Beach

Beach stone with range tinted gypsum crystal in limestone at Crystal Cliffs Beach

Crystal Cliffs Beach lies a few miles from Antigonish on the north coast of Nova Scotia, Canada. It overlooks St George’s Bay close to the Northumberland Strait. It consists of a sand and pebble spit that dams back the water of Ogden’s Brook to form a large shallow lake known as Ogden’s Pond. The waters are tidal as there is a narrow inlet/outlet to the sea. In winter, the lake is more extensive as evidenced by the quantity of dead vegetation visible in marginal marshy areas. The ripples of the slowly moving water in the Pond reflected intricate patterns of blue sky and white clouds.

Boulders and pebbles dominate the upper levels of the spit, along with blanched driftwood, and sparse vegetation such as marram grass. The lower levels are mostly coarse sand. Occasional mammal bones rest on the tide line, perhaps from a seal. Cobble-size and larger beach stones of limestone, sandstone, and conglomerate are strewn across the shore – but the most noticeable and are the ones with orange and white crystals of gypsum that have come from the nearby cliffs that give the beach its name. The cliffs are composed of Early Carboniferous Limestone belonging to the Windsor Group with substantial gleaming surfaces of white gypsum. Viewed from the sea by kayak, the cliffs are said to be a marvellous sight. The only part visible from the beach at high tide, at this particular time, showed a relatively recent and massive rock fall defacing that outcrop.

The sea water lapping against the sand, on this crisp and sunny spring day, was crystal clear, revealing through a distorting lens of saline the multitudes of coloured pebbles on the seabed. The wave-textured surface made abstract patterns of sunlit reflections. It was a beautiful place to experience.

Herm Granodiorite with Xenoliths

Macro photograph of crystals in Herm Granodiorite with a xenolith

The delightful small island of Herm lies just a short boat ride away from Guernsey in the Channel islands. The entire island is made of the Herm Granodiorite (de Pommerai and Robinson 1994). This is an intrusive igneous rock that formed below the surface of the earth, probably during the later part of the Cadomian age which lasted from about 550 to about 700 million years ago. The southern part of the island is higher than the northern part. In the south, the rock comprises a plateau with a height around 60 metres. The rock has been extensively quarried and exported in the past. The stone is particularly hard and ideal for structures like kerbstones; examples of these still feature on the Thames Embankment in London.

To the north, the area is covered by wind blown sand that hides an old wave-cut platform, glimpses of which can be seen as jagged low-lying reefs offshore.. The sand is wholly composed of shells with not only fragments but also a high proportion of undamaged miniature molluscs and sea urchin tests. The underlying Herm Granodiorite is similar to some varieties of the Bordeaux Diorite occurring in Guernsey – typically made of feldspar and quartz with some biotite and hornblende crystals. One of the main characteristics of the Herm Granodiorite is the inclusion of many contrasting lumps of other igneous rock types known as xenoliths. There is a good exposure of this rock type on Mouisonniere Beach near a stone obelisk on the marram covered dunes. [The obelisk is a navigation marker that has been constructed on the site of an earlier Neolithic standing stone (dolmen) which was taken away by quarrymen in the 19th century].

The rocky outcrop on the sandy beach is full of xenoliths. It is of special interest to geologists because of the variety in the composition and shape of the xenoliths indicating a series of different processes were involved. Some are dark, angular and made of diorite. Others are paler and more rounded; often they have a rim of darker material. The combination of crystal types and sizes varies in each type of xenolith compared with the rock in which it is embedded. The causes and possible circumstances that led to the formation of these different sorts of xenoliths are the subject of much discussion among the experts.

REFERENCES

British Geological Survey Classical areas of British geology: Guernsey, Channel Islands Sheet, 1 (Solid and Drift) Scale 1:25,000. NERC, Crown Copyright 1986.

De Pomerai, M. and Robinson A. 1994 The Rocks and Scenery of Guernsey, illustrated by Nicola Tomlins, Guernsey: La Société Guernesiaise, ISBN 0 9518075 2 8, pp 56 – 62.

Roach, R. A., Topley, C. G., Brown, M., Bland, A. M. and D’Lemos, R. S. 1991. Outline and Guide to the Geology of Guernsey, Itinerary 1 – The St Peter Port Gabbro, 76. Guernsey Museum Monograph No. 3, Gloucestershire: Alan Sutton Publishing. ISBN 1 871560 02 0, pp 4 -5.

Rock Texture & Pattern at White Point

Without a four-wheel drive vehicle we couldn’t make it as far as the promontory called White Point along the Cabot Trail in Cape Breton Island. We stopped instead at the harbour in the village. Here the walls and sea defences were made of large stacked boulders of the same local rock that outcrops at the Point so it was possible to get a really good look at the composition of them. It was amazing. It was a sunny day and everything sparkled. The rocks themselves actually sparkled. I couldn’t believe my eyes. Even the sand and the waves sparkled. I tried desperately to capture the magic of it but it was difficult because the camera mostly over compensated for the bright points of light.

Close-up it was possible to see that the rocks had large plate-like crystals of transparent mica minerals (muscovite) which were acting as small mirrors. The sand had an abundance of these shiny crystals weathered out of the rocks and catching the light. The waves agitated the crystals and further  increased the sparkling effect.

The rocks are a mixture of pink granitic gneiss and silvery black biotite schist. They originated as intrusive molten magmas beneath the earth’s crust in Devonian times approximately 375 million years ago, forming a large mass called a pluton – specifically  the Black Brook Granitic Suite. The igneous rock which has  been metamorphosed to black biotite schist was the first to be deposited and compressed into rough layers or foliations with a parallel alignment of the crystals. The igneous rock which is now mainly granitic gneiss intruded into the schist preferentially along the lines made by the foliations. There are also veins of aplite and pegmatite. The alternation of these two rock types is a wonder to behold on White Point itself. My photographs have focussed on details of the patterns and textures as revealed by the rip-rap boulders in the nearby harbour.

REFERENCES

Anoiyothin, W.Y. and Barr, S.M. (1991) Petrology of the Black Brook Granitic Suite, Cape Breton Island, Nova Scotia. Canadian Minerologist, Vol. 29, pp. 499-515.

Barr, S.M. and Pride, C.R. (1986) Petrogenesis of two contrasting Devonian Granitic Plutons, Cape Breton Island, Nova Scotia. Canadian Minerologist, Vol.. 24, pp. 137-146.

Donohoe, H. V. Jnr, White, C. E., Raeside, R. P. and Fisher, B. E, (2005) Geological Highway Map of Nova Scotia, Third Edition. Atlantic Geoscience Society Special Publication #1.

Hickman Hild, M. and Barr, S. M. (2015) Geology of Nova Scotia, A Field Guide, Touring through time at 48 scenic sites, Boulder Publications, Portugal Cove-St. Philip’s, Newfoundland and Labrador. ISBN 978-1-927099-43-8, pp. 94-97.

Atlantic Geoscience Society (2001) The Last Billion Years – A Geological History of the Maritime Provinces of Canada, Atlantic Geoscience Society Special Publication No. 15, Nimbus Publishing, ISBN 1-55109-351-0.

Rocks at Cobo Bay

Quarried surface of Cobo Granite

The beautiful and popular beach of Cobo Bay on the north coast of the Channel Island of Guernsey marks a transition between two igneous rock types: the Cobo Granite and the Bordeaux Diorite Complex. The character of the rocks that punctuate the stretches of clean sand and clear blue water changes as you walk from one end of the bay to the other.

In the southeast, near Le Guet Quarry and  Albecq the orange-pink Cobo Granite is at its most even-textured and pure with coarse grained crystals of pink potassium-rich orthoclase feldspar, light grey plagioclase feldspar, glassy quartz grains, and small black shiny crystals of biotite mica. The colours are best seen in freshly broken rock but are often obscured or muted by weathering and encrustations (lichens on dry land; algae and barnacles between the tides). The pebbles at this end of the beach are mostly brightly coloured water-worn remnants of the Cobo Granite.

The Bordeaux Diorite Complex rocks are superficially grey, composed of mostly black and white crystals  with grey plagioclase feldspar, black biotite, with minor minerals such as hornblende, pyroxene, and quartz. The Cobo Granite is younger than the Bordeaux Diorite. Deep beneath the earth’s crust, the molten granite intruded into the diorite before it was fully solidified. This led to a mixing of the two types of magma, and also a breaking-off of pieces of semi-solidified diorite that became enfolded in the granite magma before cooling. Small dark grey pieces of diorite (xenoliths) can be seen in the granite to the west below the Le Guet quarry. The numbers of xenoliths increase as you walk north east. Veins of pink aplite also run through the rocky outcrops. Whole areas of rock on the beach below the Rockmount Hotel are greyish in colour where the two rock types have melded together.

Walking northeast in the direction of Port Soif, large patches of greenish-grey inclusion rock can be seen ever more frequently embedded in the granite. I think these kinds of rocks are called granite-diorite marginal facies. By the time you reach the end of the beach, the grey diorite is more evident in outcrops and boulders. An attractive stone slipway demonstrates the contrasting colours and textures of the two rock types, the dark grey of the diorite and the orange of the granite. The angular beach stones and rounded pebbles at this point  also show the two rock types but with the grey diorite dominating, in contrast to the mostly orange granite pebbles at the other end of the beach.

This is just a very simple description of the geology at Cobo Bay and is intended only as a general guide to the rock features. My apologies for any inaccuracies. The expert explanation is much more complex and can be found by consulting the references given below.

REFERENCES

British Geological Survey Classical areas of British geology: Guernsey, Channel Islands Sheet, 1 (Solid and Drift) Scale 1:25,000. NERC, Crown Copyright 1986.

De Pomerai, M. and Robinson A. 1994 The Rocks and Scenery of Guernsey, illustrated by Nicola Tomlins, Guernsey: La Société Guernesiaise, ISBN 0 9518075 2 8, pp 48-51.

Roach, R. A., Topley, C. G., Brown, M., Bland, A. M. and D’Lemos, R. S. 1991. Outline and Guide to the Geology of Guernsey, Itinerary 1 – The St Peter Port Gabbro, 76. Guernsey Museum Monograph No. 3, Gloucestershire: Alan Sutton Publishing. ISBN 1 871560 02 0, pp 66-70.

Pebbles at Pleasant Bay

Wet pebbles at the water's edge in Pleasant Bay, Cape Breton Island, NS.

We visited Pleasant Bay on a misty May day. It lies on the Cabot Trail in Cape Breton Island, Nova Scotia, Canada. Pleasant Bay is a small village first settled by Scottish immigrants and is nestled around a picturesque fishing harbour at the foot of steep hills. The Grande Anse River meets the sea at this point and in the background are the headlands and mountains of the Blair River Inlier composed of some of the oldest rocks in the world. The village itself lies on Carboniferous sedimentary rocks but these are less well represented in the pebbles on the beach than the more ancient igneous and metamorphic rocks like granites, gneisses and schists that have been transported downstream from the surrounding highlands. You can compare these smooth rounded wave-worn beach stones with the angular rock fragments lying on the river bed at MacIntosh Brook and the Grand Anse River near Lone Shieling not too far away.