Fourchu Head Rocks Part 4

Part 4 of a series of photographs taken at Fourchu Head on Cape Breton Island in Nova Scotia, Canada, showing details of rocky outcrops and boulders composed of very ancient Neoproterozoic volcanic rock. They are all made from volcanic ash that was spewed from the volcanoes together with shattered pieces of rock that broke away from the bedrock with the explosive force of the explosion.

Fourchu Head Rocks Part 3

Part 3 of a series of photographs taken at Fourchu Head on Cape Breton Island in Nova Scotia, Canada, showing details of rocky outcrops and boulders composed of very ancient Neoproterozoic volcanic rock.

Fourchu Head Rocks Part 2

Part 2 of a series of photographs taken at Fourchu Head on Cape Breton Island in Nova Scotia, Canada, showing details of rocky outcrops, boulders, beach stones, and pebbles composed of very ancient Neoproterozoic volcanic rock.

Rocks at Dunquin on the Dingle Peninsula

The Blasket Islands are deserted now but at one time the small pier at Dunquin was a lifeline for the small island community. It is hard to imagine the hardships of their existence and the way they would have navigated in all weathers across the short stretch of water to the mainland of the Dingle peninsula in tarred canvas-covered open boats called curraghs. For the islanders wanting to buy or sell goods, needing a doctor, having to attend church, confession, christenings, weddings, or funerals, or to visit mainland friends and family, Dunquin was an important landing place. The very basic, even primitive, life of the islanders is movingly and simply told in The Islandman by Tomás O’Crohan  who lived and died on Great Blasket Island (1856 to 1937). Nowadays, it seems to be mostly small boats that launch from the pier to ferry tourists to the uninhabited islands .

Dunquin harbour not only has this important historical association but it is also a noteworthy geological location. Walking down the steep, zig-zag path from the stone-walled green fields above to the beach and pier below, there are great views of the cliffs to the north and south of the harbour. It is a transition zone between two major geological periods – where a predominantly marine environment changed to a mainly terrestrial one due to vascillating sea level relative to the land. It is the location where yellow marine siltstones belonging to the Drom Point Formation of the Silurian Dunquin Group lie next to the reddish, purplish, and greenish sandstone strata of the Silurian/Devonian Dingle Group which are terrestrial in origin.

The cliff faces seem to be striped in contrasting subtle hues. The rock layers are steeply angled now following earth movements over the many millions of years since they were originally laid down in a horizontal position. Odd circular or spherical formations can be seen in some layers. The bedding plane of one outcrop next to the pier has a roughly polygonal pattern of drying mud cracks preserved in the stone. Curving veins of quartz cut across the strata to the south of the harbour.

Altogether a very good place for rock enthusiasts and well worth a return visit. Next time I would like to take a boat trip to the Blasket Islands where (on Inishvickillane at least) the rocks are mainly volcanic tuffs and lavas.

REFERENCES

O’Crohan, Tomás,  1937 The Islandman, Oxford University Press, ISBN 978-0-19-281233-9, re-issued 2000.

Horne, Ralph R., 1976, Geological Guide to the Dingle Peninsula, Geological Survey of Ireland Guide Series No. 1, Minister for Industry and Energy, Geological Survey Office. Reprinted 1999.

Rocks at Trabeg on the Dingle Peninsula

Close-up of the Devonian conglomerate at Trabeg on the Dingle Peninsula

The sand looks black from a distance as you descend to the shore at Trá Chathail near An Trá Bheag (Short Strand) – otherwise known as Trabeg. The path cuts down deep through the stratified red rocks to get to the beach which is strewn with pebbles, mostly shades of red, maroon, green, grey, and white.

Trabeg is on the south coast of the Dingle Peninsula in Ireland, and is the “type section” of the Trabeg Conglomerate Formation which is exposed in the cliffs on the beach. This is place where that particular rock type was first described. The rock layers constitute part of the Dingle Group and were formed in the Devonian period between 345 and 395 million years ago. The conglomerates are composed of fairly well rounded pebbles of red sandstones and mudstones, with white vein quartz and chert. A few pebbles of volcanic rock and of grey limestone are also present.

The way in which the conglomerate rock has formed from the mass movement and subsequent accumulation of debris from terrestrial locations during, for example, river flood events, means that the pebbles are derived from a wide area covering many different geological types. The pebble beds or conglomerates are inter-bedded with layers of red sandstones and mudstones, the finer sediments of which were deposited normally by rivers during non-storm/flood times. The alternating layers are now tilted from the original horizontal orientation in which they were first deposited, and are clear to see dipping south at about 70 degrees.

As the cliffs at Trá Chathail are worn away by the action of waves and weathering, the pebbles contained in the conglomerate matrix are freed up and remain the shore below – an instant pebble beach. Added to these are pieces of other rock or matrix that became rounded into pebbles after they arrived on the beach. Some pebbles and rocks may have been transported by wave action from further along the coast were the geology is quite different: from the Eask Formation, West Cork Sandstone, Bulls Head Formation, and the earlier Silurian rocks of the Dunquin Group.

REFERENCE

Horne, Ralph R. (1976) Geological Guide to the Dingle Peninsula, Geological Survey of Ireland Guide Series No. 1, reprinted 1999.

Beach Stones at Corney Brook

There were no other visitors on the dull day that we turned off the Cabot Trail to look at the Corney Brook shore in the western Cape Breton Highlands. There was very low cloud cover, and it began to rain after a while, but there were treasures to be found – at least if you are like me and are fascinated by beach stones. Three main rock types are found at Corney Brook. The oldest are Neoproterozoic-Ordovician granitic pluton rocks of the Bras D’Or Terrane. Ordovician-Silurian metasedimentary rocks of the Aspy Terrane are slightly younger. And red sandstones and conglomerates belonging to the Horton Group come from the Devonian to Carboniferous Period.

The stones on the beach include all three types and probably a lot more due to the glaciation of the area. I wish I could identify and tell you the exact composition of each photographed pebble, stone or boulder – but that is tough for an amateur to determine. There is a great variety of colour, pattern, and texture to the stones which look dull when dry but amazing when wet. They include igneous and metamorphosed rocks like granite, gneiss, schist as well as sedimentary rocks like sandstone. It is possible to see just how difficult it is to not only understand the texts but also to convert into straight forward language for the non-specialist reader from the following detailed description that I discovered about the Corney Brook schist by Jamieson et al. (1987).

Comey Brook schist (unit 3d)
Medium- to high-grade pelitic and semi-pelitic schists, with minor marble and psammite, occurring on the Cheticamp River, Corney Brook, the northeastern end of Jumping Brook, and the central highlands near Calumruadh and Coinneach brooks, are referred to here as the Corney Brook schist. This unit is equivalent to the “medium grade belt” of Craw (1984). Pelitic and semi-pelitic members of the unit characteristically contain coarse staurolite, biotite, and garnet porphyroblasts, with kyanite at the highest grade, in a phyllitic to schistose matrix. Medium- to high-grade marbles, quartzites, albite schists and hornblendite recognized in the Corney Brook area (Plint et al., 1986) have not yet been identified south of the Cheticamp River. Centimetre- to metre-scale compositional layering, folded by tight to isoclinal folds, is interpreted as transposed bedding. Based on bulk compositions and rare relict primary textures, the Corney Brook schist is interpreted to have formed as a suite of clastic sediments interlayerd with felsic tuffs and minor basic flows – that is, it appears to represent the higher grade equivalents of units 3a-3c.

The softer sandstone cliffs are being eroded back by the sea. This has implications for the ground higher up and the roadway further back from the shore. For this reason a sea defence structure has been emplaced to protect the base of the cliffs. This is a gabion made of wire cages full of large beach stones and boulders that are stacked up into a wall, positioned at the most vulnerable part of the shore.